Product Code Database
Example Keywords: house -sports $20
barcode-scavenger
   » Wiki: Zero Element
Tag Wiki 'Zero Element'.
Tag

In , a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.


Additive identities
An additive identity is the in an or . It corresponds to the element 0 such that for all x in the group, . Some examples of additive identity include:
  • The zero vector under : the vector whose components are all 0; in a normed vector space its norm (length) is also 0. Often denoted as \mathbf{0} or \vec{0}.
    (2025). 9789811309250, Springer. .
  • The zero function or zero map defined by , under
  • The under set union
  • An or empty
  • An initial object in a category (an empty coproduct, and so an identity under )


Absorbing elements
An absorbing element in a multiplicative or generalises the property . Examples include:
  • The , which is an absorbing element under Cartesian product of sets, since
  • The zero function or zero map defined by under
Many absorbing elements are also additive identities, including the empty set and the zero function. Another important example is the distinguished element 0 in a field or ring, which is both the additive identity and the multiplicative absorbing element, and whose is the smallest ideal.


Zero objects
A in a category is both an initial and terminal object (and so an identity under both and products). For example, the trivial structure (containing only the identity) is a zero object in categories where morphisms must map identities to identities. Specific examples include:
  • The , containing only the identity (a zero object in the category of groups)
  • The zero module, containing only the identity (a zero object in the category of modules over a ring)


Zero morphisms
A in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if is the zero morphism among morphisms from X to Y, and and are arbitrary morphisms, then and .

If a category has a zero object 0, then there are canonical morphisms and and composing them gives a zero morphism . In the category of groups, for example, zero morphisms are morphisms which always return group identities, thus generalising the function


Least elements
A in a partially ordered set or lattice may sometimes be called a zero element, and written either as 0 or ⊥.


Zero module
In , the zero module is the module consisting of only the additive for the module's function. In the , this identity is zero, which gives the name zero module. That the zero module is in fact a module is simple to show; it is closed under addition and trivially.


Zero ideal
In , the zero ideal in a ring R is the ideal \{ 0 \} consisting of only the additive identity (or zero element). The fact that this is an ideal follows directly from the definition.


Zero matrix
In , particularly , a is a matrix with all its entries being zero. It is alternately denoted by the symbol O.
(1987). 9780387964126, Springer. .
Some examples of zero matrices are

0_{1,1} = \begin{bmatrix} 0 \end{bmatrix} ,\ 0_{2,2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ,\ 0_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} ,\

The set of m ×  n matrices with entries in a ring K forms a module K_{m,n}. The zero matrix 0_{K_{m,n}} in K_{m,n} is the matrix with all entries equal to 0_K, where 0_K is the additive identity in K.

0_{K_{m,n}} = \begin{bmatrix} 0_K & 0_K & \cdots & 0_K \\ 0_K & 0_K & \cdots & 0_K \\ \vdots & \vdots & & \vdots \\ 0_K & 0_K & \cdots & 0_K \end{bmatrix}

The zero matrix is the additive identity in K_{m,n}. That is, for all A \in K_{m,n}:

0_{K_{m,n}}+A = A + 0_{K_{m,n}} = A

There is exactly one zero matrix of any given size m ×  n (with entries from a given ring), so when the context is clear, one often refers to the zero matrix. In a , the zero matrix serves the role of both an additive identity and an absorbing element. In general, the zero element of a ring is unique, and typically denoted as 0 without any subscript to indicate the parent ring. Hence the examples above represent zero matrices over any ring.

The zero matrix also represents the linear transformation which sends all vectors to the zero vector.


Zero tensor
In , the zero tensor is a , of any order, all of whose components are zero. The zero tensor of order 1 is sometimes known as the zero vector.

Taking a of any tensor with any zero tensor results in another zero tensor. Among tensors of a given type, the zero tensor of that type serves as the additive identity among those tensors.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs